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ABSTRACT

The belief propagation (BP) technique is successful in im-
age stereo matching problem. However, when we consider
stereo matching for videos, directly applying the BP algo-
rithm frame by frame results in unsatisfactory temporally in-
consistent disparity maps. In this paper, we present the tem-
porally consistent belief propagation for video stereo match-
ing. We introduce a temporal term in traditional BP objec-
tive function and propose an adaptive weighting scheme to
account for this temporal term. We show that the proposed
algorithm performs favorably against previous methods in the
stereo video datasets. Furthermore, the proposed method can
solve problems induced by previous methods like error prop-
agation from previously occluded regions.

Index Terms— Temporal Consistency, Stereo Matching,
Disparity Estimation.

1. INTRODUCTION

The requirement of accurate depth information becomes
more important in light of the prospered development of au-
tonomous cars, 3D interaction and augmented reality. In order
to get the disparity map of the environment, many complex
algorithms have been proposed to improve the performance,
such as [1–4]. These algorithms focus on improving dispar-
ity image per image without taking temporal information into
consideration. Although temporal propagation is mentioned
in PatchMatch Stereo[4], it represents the constraint informa-
tion in the same input image during iterative procedure rather
than between different time frame images.

The account of research on temporal consistency in dis-
parity search is increasing. Most of them are using binary
weights for the temporal term, which is not robust. Fur-
thermore, previous and upcoming frames are both used to
enhance the quality, making real-time application impracti-
cal. The original disparity map can be refined with the time-
consistency attribute. The disparity map with better perfor-
mance can be provided by the proposed algorithm with only
one previous frame. The three main contributions of this
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paper are summarized as follows. First, we fuse a tempo-
ral term with adaptive weighting based on similarity into a
conventional energy function. Second, the temporally consis-
tent disparity search algorithm is required only one previous
frame. Third, the proposed method is verified in stereo video
sequences and outperforms others.

The rest of this paper is organized as follows: In Section 3
the proposed method is introduced. The experimental results
and discussion are shown in Section 4. Finally, the paper is
concluded in Section 5.

2. RELATED WORKS

There are two key techniques involved in temporal consis-
tency stereo matching algorithms. First, the proper corre-
sponding points and frames selection for the process. Second,
the proper method to fuse the temporal term.

Correspnding points and frames selection: Pham
et.al. [5] proposed a algorithm using spatio-temporal cues.
Vretps et.al. [6] proposed a techniques to filter outliers out
with statistic distribution to improve temporal robustness. A
3D bilateral volume for filtering is proposed to enhance tem-
poral consistency by Chrisyian et.al.[7]. Above methods as-
sume that the corresponding points in previous frames are lo-
cated exactly at the same position. This is not suitable for
dynamic scenes since the proper corresponding points are not
always at the same location. Optical flow algorithms such as
the Kanade-Lukas-Tomashi (KLT) method [8] and SIFT Flow
[9] are introduced to find proper correspondents points and
adopted by [10] and [11], respectively. However, both previ-
ous and upcoming frames are required in this method, which
is not practical for real-time application. In this paper, we fo-
cus on methods which use information only from preceding
frames for depth estimation.

Methods to fuse the temporal term: The window-based
temporal consistency method in [7] aggregates supporting
pixel within adjacent frames. Global methods are used to
provide better performance. Larsen et.al. [12] proposed an al-
gorithm with pixel-wise similarity measurement. More com-
plex components are considered such as mesh [13] and hyper-
planes [14]. Lv et.al.[15] estimated the scene geometry af-
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ter segment-based processing. Baek et.al.[10] uses temporal
discontinuity to scale the data term(TDT). This method con-
centrates at properly fusing the temporal term into an energy
function. However, the method from [10] is easily affected
by incorrect corresponding points. To solve this problem, we
use an additive temporal cue with adaptive weights in the pro-
posed algorithm.
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Fig. 1: The framework of our proposed method.

3. PROPOSED METHOD

3.1. Overview

We show the framework of our algorithm in Fig. 1. We use
the left and right images at time t, I lt and Irt , the disparity
map and the left image at time t− 1, Dl

t−1 and I lt−1 as inputs
to estimate Dl

t, the left disparity map at time t. Here, I lt and
Irt are used for the data term as well as the smoothness term.
I lt−1 and I lt are used for estimating corresponding points in
the previous frame by Kanade-Lukas-Tomashi (KLT) method
[8]. These two images are also used to provide correspond-
ing patches in respective frames. Dl

t−1 indicates the temporal
discontinuity within the disparity value hypothesis. The pro-
posed energy function consists of the data term, the smooth-
ness term and the proposed temporal term. The final proposed
energy function is represented by

E(p, d) = Ed(p) + Es(p, d) + Et(d,D
l
t−1(p)). (1)

3.2. Detail of the proposed algorithm

We focus on the temporal consistency term and the model to
combine it into the final energy function. The data termEt

d(p)
is generated by using the adaptive support-weight (ASW)
method [16]. For every possible disparity dn, the data term,
Ed(dn), is represented as

Ed(dn) =

∑
q∈Ωp,qd∈Ωpd

w(p, q)w(pd, qd)e(q, qd)∑
q∈Ωp,qd∈Ωpd

w(p, q)w(pd, qd)
, (2)

where w(p, q) accounts for range weight and spatial weight,
as defined in ASW [16] and e(q, qd) can be any pixel-wise

matching cost. In our implementation, we follow the setting
in [17] as

e(q, qd) = β · (|I(q)− I(qd)|)+(1−β) · (|IC(q)− IC(qd)|),
(3)

where β is the ratio parameter to fuse two matching costs, one
is the AD cost and the other is the Census cost, IC .

The smoothing term, which is also called the pairwise
term, is defined as

Es(p, d) =Ws · λ ·min(|lp − d|, T ). (4)

We adopt the truncated linear model in [18]. We set the
weight, Ws, according to the color difference between adja-
cent pixels in a similar approach and with similar parameters
as in [19].

To preserve the strong data term, the temporal consistency
term is added into the energy function instead of scaling the
data term as [10]. The weight should be adaptive to increase
the robustness. This term can be defined as

Et(d,D
l
t−1(p)) =Wf (pt, I

l
t−1) ·min(|lp−Dl

t−1|, Tf ), (5)

where Wf (pt, pt−1) are the proposed adaptive weights based
on the similarity between patches in the present and the pre-
vious frame. Dt−1 is the disparity map of the previous frame.
We apply a truncated factor, Tf , to increase robustness as was
shown to be helpful in [11]. I lt(p) is the processed patch in
the present frame, and I lt−1(p

′) is the corresponding patch in
frame t − 1. The proposed method adjusts the weights of
previous frame by evaluating the similarity to previous corre-
sponding pixels estimated by Lucas and Kanade optical flow
method [8]. The measured similarity weights of the temporal
discontinuity for the temporal consistency term is defined as

Wf (pt, pt−1) =
α

2S(pt,pt−1)
, (6)

where α is the parameter that should balance the cost from
stereo matching and the previous frame cue. S(pt, pt−1) is
the similarity score representing the unlikelihood of the refer-
ence patch I lt−1(p

′) to be the same object as I lt(p). A higher
similarity indicates that Wf (pt, pt−1) will become larger.
In other words, the more similar the corresponding patches
are, the more the disparity value is forced to be temporally
smooth. Less similarity with corresponding pixels may indi-
cate mismatching or occlusion cases making weights smaller
to avoid the error being propagated to the next frame. We ap-
ply range weighting in ASW as our similarity measurement,
which is represented as

S(pt, pt−1) = γ ·

∑
qt∈Nt

p
wq(pt−1, qt−1)|I(qt)− I(qt−1)|∑

qt∈Nt
wq(pt−1, qt−1)

.

(7)
N t

p represents the local window for the similarity measure-
ment between this patch and the corresponding patch at time



t−1. wq(pt−1, qt−1) is the weighting function from the color
difference between the center pixel and ones within its sup-
porting window, which can be shown as

wq(pt−1, qt−1) = exp(
−|I lt(q)− I lt−1(q)|

γc
). (8)

where γc is the sensitivity factor for intensity difference.
As a result, dt, is acquired from proposed cost function via
Winner-Takes-All manner.

4. EXPERIMENTAL RESULT

We evaluate our methods by testing on synthetic stereo video
sequences which are the new Tsukuba dataset[20] and five
different scenes from the DCB Grid dataset [7]. The size of
the similarity window is Nt is 5 × 5. For the data term we
adopted a 7× 7 Census window and β is set to 0.25. Further-
more, we set {γr, γg} = {5, 17.5}. The size of the ASW is
13× 13 and γd is 10. For the smoothness term we set the pa-
rameters to {T, λ} =

{
L
8 , 2
}

where L is the disparity range.
For our proposed method for the temporal term, we set γ to
0.001, the truncated factor Tf is 24.

4.1. New Tsukuba Dataset

We apply our method to the New Tsukubsa dataset, which
is a series of synthetic images with ground truth. The new
Tsukuba dataset [20] comprises a static scene with a moving
stereo camera. To evaluate our method on different condi-
tions, we choose two parts of the dataset, which are frames
1-30 and frames 70-100. In frames 1-30, the camera rotates
counter-clockwise seen from the top, and the movement is
relatively small. In frames 70-100, the camera approaches the
statue in the center, and the camera movement is larger than
that in frame 1-30.

We evaluate the performance of our method by compar-
ing the error rates of the disparity maps. We compare four
methods including DCB [7], the original BP algorithm with-
out previous frame cue, TDT [10], and our proposed method.
Note that all methods are implemented with the same match-
ing costs, weighted Census and AD costs. The last three
methods are implemented based on the same BP-based op-
timization with different condition about temporal term. The
original BP algorithm[19] does not include the temporal term
, TDT [10] alters the data term directly, and our proposed
method uses adaptive weighting on the temporal consistency
term. The result is shown in Table 1. The respective error of
each frame is shown in Fig.2.

The results of the disparity map are shown in Fig.6. We
also highlight the improvement on the sculpture in Fig. 3.

As Table 1 and Fig. 2(a) show, the overall correctness
of the disparity map is better than DCB[7], BP[19] and
TDT[10]. In the first 10 frames, the movement is relatively
small compared to the following sequence. We can see that

Table 1: Error rates (%) of algorithms for New Tsukuba
dataset from frame 1-30 and frame 71-100.

Frame BP[19] DCB[7] TDT[10] Proposed

1-30 10.48 18.2 10.45 10.09

71-100 15.4 22.8 14.9 12.7

(a) Frame 1-30 (b) Frame 71-100

Fig. 2: Error rates of different algorithms. (a) Frame 1-30 and
(b) Frame 71-100.

Fig. 3: Error comparison of BP (left) and the proposed
method (right). Green pixels indicate occlusion regions and
red pixels are error regions. With temporal information, the
proposed method outperforms in the statue region.

the proposed method yields a higher improvement after the
15th frame, where the camera begins to move faster. From
Fig.2(b), representing frames 71-100, our proposed method
can achieve 14.8% error reduction compared to [10].

From the above, we can tell that the improvement is
related to the movement of the camera. If the movement
is larger, such as in frames 15-30 and frames 71-100, our
method can provide a higher improvement as compared to
the slower movement in frames 1-10. In summary, the im-
provement becomes more pronounced with a larger camera
movement.

4.2. DCB Grid Dataset

We use a synthetic dataset with five stereo sequences and
ground truth provided by the DCB Grid Dataset[7]. The result



Table 2: Comparison of results in dataset [7].

Book Street Tanks Temple Tunnel Avg.

DCB [7] 8.61 16.39 7.15 11.98 2.05 9.08
BP [19] 5.19 13.84 3.41 9.43 1.35 7.97

TDT [10] 5.20 12.33 3.36 7.89 1.14 5.98
Ours (0.08) 4.82 10.21 4.09 6.38 1.84 5.47
Ours (0.04) 4.89 11.20 3.48 7.11 1.19 5.57
Ours (0.02) 5.03 12.11 3.37 8.21 1.19 5.98

Fig. 4: Error comparison of different α setting in Tanks in
frame 25. (from left to right: α = 0.08, 0.04, 0.02)

is presented in Fig.5 and Table 2. Note that we used three dif-
ferent α settings in the DCB data to further discuss the char-
acteristics of our method.

For the Book, Street and Temple sequences, our method
can achieve the lowest error rate when α = 0.08 . For the
Tank sequence, our results are superior for α = 0.02. We
choose Tanks and Temple to discuss how the parameters in
our method affect the performance.

Here, α represents the balance of our temporal term. The
energy cost of a disparity candidate far from the previous ref-
erence disparity value will be punished according to α. The
approaching camera creates more occluded region than oth-
ers. Thus, the temporal term from the previous cue will dom-
inate the whole energy function and cause error propagation.
We suggest that α should be set to a lower value when using
our method on faster take-in scenery. The comparison for dif-
ferent α can be seen in Fig.4. In fact, the error rate in frame
25 is reduced from 5.06% to 3.36% when choosing α = 0.02
instead of α = 0.08, which is the best choice for average
accuracy.

The costs in the energy function of candidate depth is
close in repetitive textures, causing the difference of candi-
date to be smaller. Instead of weighting the data term di-
rectly, a adaptive weight temporal consistency term is added.
This makes the label with strong representative data term is
not reduced by similar corresponding pixels. In the DCB
method[10] the previous depth information is passed into the
current costs by multiplying a Gaussian weight. Using mul-
tiplication may deteriorate the relative size of the data term,
causing the disparity determination to choose the wrong re-
sult. In comparison, an adaptive weighted temporal cue is

adopted in our method, which can preserve the relation of
different candidate disparity values. As shown in Fig.5, the
proposed method provide smoothest result in the flat regions
compared to other algorithms. In the Tanks sequence, in
which the camera is approaching a static scene, setting α to a
lower value can also yield a competitive result.

5. CONCLUSION

We propose an additive adaptive weight temporal term to pro-
vide temporal consistency. The proposed method can pre-
serve the representative data term through the temporal term
instead of weighting the data term directly. Our method
achieves state-of-the-art performance in two different syn-
thetic stereo datasets. In New Tsukuba, the proposed method
provides a higher improvement with for faster camera move-
ment. In the DCB Grid dataset, our method can obtain the
highest performance in most scenes. We also analyze the
characteristics of our method in different scenery and param-
eter settings. In future work, we will extend the algorithms
with an adaptive selection based on the video content and the
scene change.
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